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Spatial confounding, where the inclusion of a spatial random effect introduces11

multicollinearity with spatially structured covariates, is a contentious and active area12

of research in spatial statistics. However, the majority of research into this topic has13

focused on the case of spatial mixed models. In this article, we demonstrate that14

spatial confounding can also arise in the setting of generalized estimating equations15

(GEEs). The phenomenon occurs when a spatially structured working correlation16

matrix is used, as it effectively induces a spatial effect which may exhibit collinearity17

with the covariates in the marginal mean. As a result, the GEE ends up estimating a18

so-called unpartitioned effect of the covariates. To overcome spatial confounding, we19

propose a restricted spatial working correlation matrix that leads the GEE to instead20

estimate a partitioned covariate effect, which additionally captures the portion of21

spatial variability in the response spanned by the column space of the covariates. We22

also examine the construction of sandwich-based standard errors, showing that the23

issue of efficiency is tied to whether the working correlation matrix aligns with the24

target effect of interest. We conclude by highlighting the need for practitioners to25

make clear the assumptions and target of interest when applying GEEs in a spatial26

setting, and not simply rely on the robustness property of GEEs to misspecification27

of the working correlation matrix.28
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1 Introduction31

Generalized estimating equations (GEEs, Liang and Zeger, 1986) are a well-established32

and studied approach for analyzing spatial data (Albert and McShane, 1995; Lin and33

Clayton, 2005). The method consists of a model relating the marginal mean to a set34

of observed covariates, an assumption on the marginal mean-variance relationship, and a35

working correlation matrix characterizing the marginal spatial correlation of the responses.36

A key feature of (spatial) GEEs is their robustness to misspecification of the working37

correlation matrix: the estimated coefficients converge to the same true parameter values,38

with the choice of working correlation only affecting the efficiency of the estimate.39

In this article, we demonstrate that when GEEs are applied to spatially indexed data,40

spatial confounding (Hodges and Reich, 2010; Paciorek, 2010; Hanks et al., 2015) can arise,41

with the main consequence being that changing the working correlation can, in fact, change42

the target quantity that the GEE is estimating. At its core, spatial confounding in GEEs43

occurs because assuming a spatially structured working correlation effectively induces a44

spatial effect in the marginal mean, which may be collinear with other spatially indexed45

covariates. This results in the GEE estimating a so-called unpartitioned effect of the co-46

variates. As an alternative and to alleviate for spatial confounding, we propose a restricted47

spatial working correlation matrix based on the idea of partitioning the induced spatial48

effect into a component that can be explained by the covariates along with a residual pro-49

jection component, and then moving the former into the marginal mean. We show that the50

resulting, restricted spatial GEE estimates a so-called partitioned effect of the covariates,51

which contains the portion of spatial variability in the response lying in the direction of the52

covariates. In the case where a constant mean-variance relationship is assumed, restricted53

spatial GEEs simplify to independent estimating equations (IEEs, Liang and Zeger, 1986),54

with the implication that adjusting for spatial confounding in this setting produces the55

same estimates as ignoring the spatial correlation entirely (see also Khan and Calder, 2020;56

Zimmerman and Ver Hoef, 2021). We further demonstrate how spatial confounding has57

implications for inference in GEEs, specifically, statistical efficiency is tied to whether the58

choice of the working correlation matrix reflects the inferential target itself, and it is not59

simply a matter of how close the working correlation is to the true marginal correlation.60
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This paper makes an important contribution to the area of spatial confounding, as61

almost all research so far has been devoted to its occurrence in (Bayesian) spatial mixed62

models where the problem is relatively explicit i.e., both the fixed effects and spatial random63

effect are posited directly as part of the linear predictor. We refer the reader to Nobre et al.64

(2021) and Reich et al. (2021) for recent reviews on the topic, and Hodges and Reich (2010);65

Paciorek (2010); Hughes and Haran (2013); Hanks et al. (2015); Khan and Calder (2020);66

Dupont et al. (2021) among many others for examples of research into spatial confounding67

in the mixed models framework.68

To our knowledge, spatial confounding has not been previously raised as an issue for69

GEEs; in fact, Paciorek (2010) conjectured that the estimating equation approach was not70

capable of reducing bias from unmeasured spatial confounding, while Hodges and Reich71

(2010) noted as a aside that GEEs adjusts standard errors for clustering but has little72

effect on point estimates unless the working correlations are very large. Our proposed73

restricted spatial GEE can be interpreted as an estimating equation version of restricted74

spatial regression (Hodges and Reich, 2010). That is, because spatial confounding occurs75

indirectly in a GEE, then to alleviate this we propose to adjust the working correlation76

rather than the marginal mean itself. Interestingly, the presence of a (typically) non-77

constant mean-variance relationship means that this adjustment is a function of both the78

observed covariates and the coefficients in the GEE. This contrasts to the mixed model79

setting where the adjustment usually depends solely on the former.80

More generally, the concept of confounding in GEEs has been raised before in the81

setting of longitudinal data (see for instance, Gromping, 1996; Crouchley and Davies, 1999).82

Recently, Bible et al. (2019) went so far as to say that, in the context of GEEs for marginal83

transition models, practitioners have been arbitrarily choosing working correlation matrices84

and then mistakenly citing the works of Liang and Zeger (1986) among others for the85

robustness properties of GEEs. This article is the first to address similar issues arising when86

GEEs are applied to spatial data. At the same time, it is important to emphasize that we87

are by no means advocating the proposed restricted spatial GEEs as a necessarily superior88

method of inference in the estimating equation setting. Restricted spatial regression is not89

a universally accepted approach to alleviate for spatial confounding (Khan and Calder,90
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2020), and there exists active discussion in the spatial statistics literature regarding what91

exactly various approaches to alleviating spatial confounding are estimating and assuming92

(Hanks et al., 2015; Hefley et al., 2017; Khan and Calder, 2020; Papadogeorgou, 2021). It93

is not the aim of this article to settle this debate in the context of GEEs, and ultimately94

we do not believe there is a single best approach under all data settings. Rather, our95

main message is one of caution: spatial confounding can occur in GEEs, and while we have96

proposed one approach to alleviating this, this may not necessarily be what the practitioner97

wants. Rather, we must be more careful about the choice of the working correlation when98

applying GEEs to spatially indexed data, and understand whether it aligns with the target99

of interest and the assumptions regarding the true data generation mechanism.100

The rest of this article is structured as follows. Section 2 establishes the concept of101

spatial confounding in GEEs and proposes the restricted spatial working covariance ma-102

trix. Section 2.1 provides some interpretation and insight behind the unpartitioned and103

partitioned effects, while Section 3 discusses the construction of standard errors. Sections104

4 and 5 demonstrates the presence and impact of spatial confounding in GEEs through105

simulation and a real application to a dataset on pelagic fish species richness. Section 6106

offers some concluding thoughts.107

2 Spatial GEEs108

Consider a set of n spatially indexed observations {x(si), y(si); i = 1, . . . , n}, where si ∈ D109

denotes the location of the i-th observation in some spatial domain D, y(si) denotes a110

univariate response, and x(si) denotes a p-vector of covariates. In this article we focus111

on the geostatistical setting where we have a continuous distance measure between spatial112

locations, although the developments below carry over to the case where we have areal113

data and the dependence is described through an associated adjacency matrix (say). Let114

y = {y(s1), . . . , y(sn)}> denote the full n-vector of responses, and X denote the n × p115

model matrix formed from stacking the x(si) as row vectors, and which is assumed to be116

of full column rank. We consider fitting spatial GEEs to such data, which involves the117

following three assumptions: 1) the marginal mean, E(y) = µ, is modeled as g(µ) = Xτ ,118

where τ is a p-vector of regression coefficients and g(·) is a known link function applied119
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element-wise to µ; 2) the marginal mean-variance relationship is given by Var(y) = φh(µ)120

for some dispersion parameter φ > 0 and variance function h(·) applied element-wise to121

µ; 3) a working correlation matrix R is used to describe the spatial correlation between122

observations. Based on these moment assumptions, a GEE then solves the system of123

equations124

1

φ
D>A−1/2R−1A−1/2(y − µ) = 0,

where D = ∂µ/∂τ and A = Diag{h(µ)}. We alternate between solving the above to125

obtain updates of τ , and then separately updating for R and φ. For example, the latter126

can be updated via maximum pseudo-likelihood estimation, and we provide more details127

about this in the Supplementary Material.128

For spatially indexed data, a typical form to assume for the working correlation is129

Rsp = πΣsp + (1− π)I, that is, a weighted average of a spatial correlation matrix Σsp and130

a nugget effect as represented by the identity matrix I, where π ∈ (0, 1) (see for example131

Albert and McShane, 1995; Lin and Clayton, 2005; Adegboye et al., 2018, noting the nugget132

effect is sometimes omitted). The precise form of the spatial correlation matrix, Σsp, is133

not important here, and we only require it to be a positive definite matrix. In practice, a134

common choice is to parameterize Σsp via a Matérn correlation function with smoothness135

ν > 0 and spatial scale parameter s > 0 (Lin and Clayton, 2005; Adegboye et al., 2018).136

Next, to ease discussion and make the notation more analogous to what is commonly seen137

in the spatial mixed model literature (e.g., Hanks et al., 2015), we adopt the alternate138

parameterization φπ = σ2
sp and φ(1 − π) = σ2

e , and subsequently define the unrestricted139

spatial working covariance matrix Vsp = φRsp = σ2
spΣsp + σ2

eI along with the resulting140

unrestricted spatial GEE, D>A−1/2V −1sp A
−1/2(y − µ) = 0. Estimation of (φ, π)> is then141

replaced with estimation of the variance parameters (σ2
sp, σ

2
e)>.142

Conditional on the unrestricted spatial covariance Vsp, we can solve and interpret the143

resulting unrestricted spatial GEE as iteratively minimizing the quadratic loss function144

2−1
{

(A(0))−1/2z(0) − (A(0))−1/2D(0)τ
}>
V −1sp

{
(A(0))−1/2z(0) − (A(0))−1/2D(0)τ

}
, where z(0) =145

D(0)τ̂ (0) + (y − µ(0)) is an n-vector of working responses based on the coefficient values146

at the current iteration, denoted as τ (0), and µ(0) = g−1(Xτ̂ (0)). It is straightforward to147
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show that iteratively minimizing this loss function is equivalent to applying a Newton-148

Raphson method to the unrestricted spatial GEE. We can further interpret the quadratic149

loss function as iteratively solving the working linear model150

A−1/2z = A−1/2Dτ + ρ+ e, (1)

where the dependence on values at the current iteration is omitted for ease of presentation.151

The quantities ρ and e denote induced spatial and nugget effects respectively, which are152

independent of each other, and satisfy E(ρ) = E(e) = 0 and Cov(ρ) = σ2
spΣsp, Cov(e) =153

σ2
eI. We emphasize that because we are working with GEEs, then neither the spatial or154

nugget effects are explicitly assumed as part of the model setup. Instead, the two effects155

are implied by the unrestricted spatial working covariance, Vsp. By iteratively solving the156

working linear model in (1), we obtain coefficient estimates from an unrestricted spatial157

GEE, which we denote here as β̂. Note we have deliberately chosen a different notation158

for the estimated coefficients to reflect a specific choice of the working covariance i.e., β̂159

denote estimates based on the unrestricted spatial GEE using Vsp as the form for the160

working covariance matrix.161

Let PD = D(D>D)−1D> denote the projection matrix onto the column space of D.162

Then similar to Hanks et al. (2015), we can rewrite equation (1) as163

A−1/2z = A−1/2D
(
τ + (D>D)−1D>ρ

)
+ (I −A−1/2PD)ρ+ e

= A−1/2D
(
τ + (D>D)−1D>ρ

)
+ ρ̄+ e, (2)

where ρ̄ = (I −A−1/2PD)ρ is a so-called residual projected spatial effect with E(ρ̄) = 0164

and Cov(ρ̄) = σ2
sp(I−A−1/2PD)Σsp(I−A−1/2PD)>. Critically, equation (2) suggests that165

if we define a new restricted spatial working covariance matrix166

Vrsp = σ2
sp(I −A−1/2PD)Σsp(I −A−1/2PD)> + σ2

eI, (3)

and subsequently solve the resulting restricted spatial GEE, D>A−1/2V −1rspA
−1/2(y−µ) =167

0, then the target quantity being estimated is changed from τ to τ + (D>D)−1D>ρ.168
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More formally, we denote the estimated coefficients from a restricted spatial GEE as α̂,169

as opposed to the estimates from an unrestricted spatial GEE, β̂. We will compare these170

two estimates in more detail later on. Stepping back however, the above developments171

demonstrate that spatial confounding can, in fact, occur in the setting of GEEs, with172

the major implication being that the choice of the working covariance matrix can have a173

profound impact on the target that the GEE is estimating.174

One interesting feature of the restricted spatial working covariance matrix Vrsp is that175

it is a function of the regression coefficients. This contrasts to restricted spatial regression176

in spatial mixed effects models where, because the projection is done on the scale of the177

linear predictors, then the residual projection is (almost always) chosen to be (I − PX)178

and hence only depends on the measured covariates or some variation thereof (Hodges and179

Reich, 2010; Hughes and Haran, 2013). Also, note we can form the projection matrix PD180

from only a subset of the covariates, and all the developments in this article can be adapted181

to such case. However for ease of presentation, we focus attention here on the projection182

formed from all the columns of D.183

We conclude this section by noting that in the special case of a constant mean-variance184

relationship i.e., h(µ) = 1, some simplifications arise in the case of restricted spatial GEEs.185

In the Supplementary Material we show that in this case the restricted spatial GEEs186

reduces to independent estimating equations (IEEs, Liang and Zeger, 1986), meaning both187

restricted spatial GEEs and IEEs produce the same estimates, and in fact the same inference188

if sandwich-based standard errors are used (see also Section 3 later on). The equivalence189

between the estimates produced from restricted spatial GEEs and IEEs in this special190

case, noting that the latter effectively amounts to a non-spatial GEE, is consistent with191

previous literature on restricted spatial regression in the spatial mixed model setting (e.g.,192

Khan and Calder, 2020; Zimmerman and Ver Hoef, 2021). However, the fact that this193

equivalence holds provided a constant mean-variance relationship is assumed i.e., it does194

not depend on the choice of link function g(·), is a new finding and has some interesting195

implications. Given that, in practice, GEEs are primarily used for the situation with a196

non-constant mean-variance relationship, we defer the full details of these developments to197

the Supplementary Material.198
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2.1 To Restrict or Not to Restrict?199

Consider the unrestricted spatial GEE, as encapsulated by the working linear model in200

(1). We interpret the coefficients β as an unpartitioned effect of the covariates, since this201

is based around not partitioning the induced spatial effect ρ and leaving it entirely in the202

working covariance Vsp. In contrast, we interpret α in the restricted spatial GEE as a203

partitioned effect of the covariates since, as seen from the working linear model in (2), it is204

motivated from the partitioning ρ = A−1/2PDρ + (I −A−1/2PD)ρ. That is, the induced205

spatial effect is decomposed into a component that can be explained by the covariates, and206

the residual partition lying in the orthogonal complement. In the restricted spatial GEE,207

the former is treated as fixed and pulled into the marginal mean, while the latter remains208

random and forms part of the restricted spatial working covariance matrix Vrsp. The extent209

to which the unpartitioned and partitioned effects differ is determined by how collinear the210

induced spatial effect and the covariates are, as quantified by least squares type quantity211

(D>D)−1D>ρ, i.e., the regression of the induced spatial effect ρ on D, noting that this212

quantity varies as a function of sample size n and covariates X.213

To summarize, spatial confounding in GEEs can be viewed as a form of multicollinear-214

ity: assuming a spatial working covariance matrix Vsp induces a spatial effect which may215

be collinear with the observed covariates, and the unpartitioned effect β arises as the con-216

sequence of this (see also Hanks et al., 2015; Hefley et al., 2017; Khan and Calder, 2020,217

for analogous explanations of spatial confounding in terms of multicollinearity for Bayesian218

spatial mixed models). The partitioned effect α is an attempt to adjust for this collinearity,219

by moving the part of the spatial covariation in the response which can be explained by220

the covariates into the marginal mean. Put another way, in restricted spatial GEEs, all221

variation in y over which the covariate X and unrestricted spatial working covariance are222

competing over is attributed to the former.223

In the context of spatial mixed models, Hanks et al. (2015) interpreted β as a conditional224

effect and α as an unconditional effect, based on the idea that in the former one conditions225

on ρ while in the latter one does not. We choose not use this terminology for two reasons.226

First, the use of the term “conditional” is potentially confusing here because GEEs are227

usually thought of as estimating marginal or population-averaged effects, in contrast to the228

8



conditional effects derived from mixed models. Second, the interpretation of conditional229

versus unconditional effects brings about the connotation that the GEE either does or does230

not condition on the induced spatial effect ρ. The above discussion however show that,231

in fact, the restricted spatial GEE partly conditions on ρ, specifically, the part spanned232

by the column space of D. The remaining residual projection, ρ̄ = (I − A−1/2PD)ρ, is233

still treated as random and forms part of the restricted spatial working covariance matrix.234

Moreover, this residual projection can still be spatially correlated. For example, consider235

a situation where we fail to include a spatially structured covariate that is informative for236

the response. Then the induced spatial effect ρ can be thought of as playing the role of237

this missing covariate (although there is controversy over this interpretation; see Hodges238

and Reich, 2010). If the missing covariate can not be entirely explained by the included239

covariates X, then the residual projection (I −A−1/2PD)ρ and thus the restricted spatial240

working covariance in (3) would still exhibit some sort of spatial structure.241

With two working covariance matrices producing two different covariate effects, a nat-242

ural question to ask is which one should practitioners be (more) interested in (see Hanks243

et al., 2015; Hefley et al., 2017; Papadogeorgou, 2021, for similar discussions). In the con-244

text of GEEs, one could make the case for using a restricted spatial GEE and having more245

interest in the partitioned effect α, as it better aligns with what a marginal estimating246

equation approach to spatial analysis is designed to do, namely to explain the marginal247

mean using the observed covariates. Specifically, in fitting a GEE the aim is typically to248

have everything that the covariates can explain about the response to go into the marginal249

mean structure, and thus, if this is the goal, it could be argued that this should also include250

the portion of the spatial structure in the response that can be explained by the covari-251

ates. The role of the working correlation/covariance matrix should then be to explain any252

residual covariation between observations after accounting for this marginal mean. That253

is, it should be structured so as to not introduce any artificial multicollinearity with the254

covariates and take away part of their explanatory power in the marginal mean. This is255

precisely what the restricted spatial GEE sets out to achieve with the partitioned effect α.256

At the same time, we emphasize that the above is by no means as a definitive argument257

for restricted spatial GEEs (noting that restricted spatial regression methods in general258
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are by no means universally accepted, Khan and Calder, 2020), and much also depends on259

the quantity the practitioner is actually interested in estimating (Papadogeorgou, 2021).260

Rather, the main message of this article is really of caution: spatial confounding can arise261

in the GEE setting, and as a result we urge practitioners to think carefully about the choice262

of the working correlation when applying GEEs to spatially indexed data, and whether it263

aligns with their inferential quantity of interest and the assumptions they make relating to264

the true data generation mechanism.265

3 Standard Errors266

For both unrestricted and restricted spatial GEEs, sandwich covariance matrices can be267

constructed in a manner similar to standard applications of GEEs (Liang and Zeger, 1986).268

Let B̂sp = D̂>Â−1/2V̂ −1sp Â
−1/2D̂ and B̂rsp = D̂>Â−1/2V̂ −1rsp Â

−1/2D̂ denote the bread269

matrices based on the estimated unrestricted and restricted spatial GEE, respectively.270

Then the sandwich covariance matrices for β̂ and α̂ are respectively given by271

Ĝsp = B̂−1sp

(
D̂>Â−1/2V̂ −1sp Â

−1/2Ṽ0Â−1/2V̂ −1sp Â
−1/2D̂

)
B̂−1sp , (4a)

Ĝrsp = B̂−1rsp

(
D̂>Â−1/2V̂ −1rsp Â

−1/2Ṽ0Â−1/2V̂ −1rsp Â
−1/2D̂

)
B̂−1rsp, (4b)

where Ṽ0 = Ĉov(y) generically denotes an estimate of the true marginal covariance, and272

quantities are calculated using the relevant parameter estimates. Based on the above,273

we can construct Wald confidence intervals and hypothesis tests for the estimates from274

unrestricted and restricted spatial GEEs e.g., for the latter a (1−s)×100% Wald confidence275

interval for the k-th coefficient is given as (α̂k − q1−s/2Ĝ
1/2
rsp,kk, α̂k + q1−s/2Ĝ

1/2
rsp,kk), where276

Ĝrsp,kk denotes the k-th diagonal element of Ĝrsp defined in (4b) and we set q1−s/2 as277

the (1 − s/2)-th quantile of the t-distribution with (n − p) degrees of freedom. In the278

Supplementary Material, we provide further discussion of the special case of a constant279

mean-variance function, and how sandwich standard errors of IEE and restricted spatial280

GEE coincide in this setting.281

Consider now the issue of statistical efficiency, as captured by the sandwich standard282

errors Ĝ
1/2
sp,kk and Ĝ

1/2
rsp,kk. Commonly, discussions regarding the efficiency of GEEs come283
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down to how close the form of the working covariance matrix matches that of the true284

marginal covariance V0 = Cov(y). This is also the case here e.g., if Cov(y) resembles that285

of an unrestricted spatial covariance matrix, then (4a) will produce smaller standard errors286

compared to using (4b), and vice versa. However, the more important but perhaps more287

subtle point here is that because the choice between the unrestricted and restricted working288

covariance matrix is tied to whether we are interested in estimating the unpartitioned or289

partitioned effect of covariates (see Section 2.1), then we see that efficiency is intimately290

connected to whether the working covariance is aligned with the inferential quantity of291

interest. To give an example of this, suppose we are interested in the partitioned effect292

of the covariates, α. If we fit the restricted spatial GEE and use the associated sandwich293

covariance matrix in (4b), then our standard errors will be comparatively small, because294

the restricted spatial working covariance is aligned with the target that we want to perform295

inference on. In fact, the estimated standard error here would (approximately) reduce to296

the naive model-based covariance estimator simply given by B̂−1rsp. On the other hand, if297

we are interested in α but instead fit the unrestricted spatial GEE and use the associated298

sandwich covariance matrix as given by (4a), then our standard errors will be comparative299

larger because the unrestricted spatial working covariance is no longer aligned with the300

target of interest (since this type of GEE aims to estimate the unpartitioned effect in-301

stead). Put another way, even if the target quantity of interest and the working covariance302

matrix structure are not aligned, it is still possible to perform valid inference on the former303

e.g., confidence intervals with nominal coverage probability. But we pay the price of less304

efficiency. We confirm this result with our simulations in the next section. To summarize,305

because changing the working covariance matrix can affect the target that the GEE is esti-306

mating in the presence of spatial confounding, then statistical efficiency also becomes tied307

to how close the working covariance is aligned with the target quantity of interest.308

4 Simulation Study309

To empirically demonstrate the presence and implications of spatial confounding in GEEs,310

we simulated spatially indexed data from either an unrestricted or restricted marginal311

spatial model, and compared the estimation and inference performance of three types of312
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GEEs: 1) an IEE with working covariance matrix Vind = σ2
eI with σ2

e is estimated. We refer313

to this as GEEind; 2) An unrestricted spatial GEE characterized by (1), which we refer to314

as GEEsp; 3) A restricted spatial GEE characterized by (2), which wee refer to as GEErsp.315

Maximum pseudo-likelihood estimation was used to estimate all parameters in each of the316

working covariance matrices; see the Supplementary Material for details. We considered317

three response types: continuous responses generated from a marginal Gaussian model,318

count responses from a marginal Poisson model, and responses from a marginal binomial319

model with trial size equal to five. For brevity, we only present results from the Poisson320

response case below; results for the Gaussian and binomial response case are provided in321

the Supplementary Material, and present broadly similar conclusions.322

The details of the data generation process are as follows. For each simulated dataset, we323

first generated n random spatial locations uniformly from the unit square [0, 1]2. We then324

constructed an n × 2 model matrix X consisting of an intercept and one slope covariate325

x = (x1, . . . , xn)> ∼ N(0,Σx,0), where Σx,0 was parameterized via an exponential corre-326

lation function with scale parameter sx,0 = 0.8 and using an Euclidean distance metric.327

This value of the spatial scale was chosen based on the formulas given in the simula-328

tion study of Hanks et al. (2015), and reflected a moderate spatial dependence. Next,329

we set up a spatial correlation matrix Σsp,0 that was also parameterized via an exponen-330

tial correlation function with spatial scale ssp,0 = 0.8. Based on the above quantities, we331

then simulated spatially structured from one of two potential models: i) an unrestricted332

marginal spatial model with true marginal mean vector given by µ0 = g−1(Xβ0) for a333

vector of true unpartitioned effects β0, and the true marginal spatial covariance matrix334

as A
1/2
0 Vsp,0A

1/2
0 = A

1/2
0 (Σsp,0 + 0.1I)A

1/2
0 where A0 = Diag{h(µ0)}; ii) a restricted335

marginal spatial model with true marginal mean vector given by µ0 = g−1(Xα0) for a336

vector of true partitioned effects α0, and the true marginal spatial covariance matrix as337

A
1/2
0 Vrsp,0A

1/2
0 = A

1/2
0

{
(I −A−1/20 PD0)Σsp,0(I −A−1/20 PD0)

> + 0.1I
}
A

1/2
0 . Notice how338

that the forms of Vsp,0 and Vrsp,0 reflect the forms of the unrestricted and restricted spatial339

working covariance matrices defined in Section 2, respectively. The values of β0 and α0340

are discussed later on. We considered sample sizes n = {100, 225, 400, 625}, and for each n341

simulated 400 datasets. As discussed in Hanks et al. (2015), with both the slope covariate342
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x and marginal spatial covariance matrices exhibiting spatial structure, it means that in343

finite samples they can exhibit collinearity with each other (with the degree of collinearity344

varying across simulated datasets) and hence spatial confounding can arise under this data345

generation mechanism.346

For the three GEEs fitted, we assessed performance as follows. When data were gen-347

erated from the unrestricted marginal spatial model, we examined the bias and variability348

of the estimated slope coefficients relative to the true unpartitioned slope (i.e., second349

element in β0) as well as the true partitioned slope (we discuss the calculation of this350

shortly). We also calculated 95% Wald-type confidence intervals based on the sandwich351

covariance matrices in Section 3, and assessed inference on the true unpartitioned slope352

based on empirical coverage probability (averaged across the 400 simulated datasets) and353

interval widths. When data were generated from the restricted marginal spatial model, we354

examined the bias and variability of the estimated slope coefficients relative to the true355

partitioned slope (i.e., second element in α0). Similar to the unrestricted case, we also cal-356

culated 95% Wald-type confidence intervals and assessed inference on the true partitioned357

slope. To construct the sandwich covariance matrices in all cases, we assumed the true358

marginal covariance was known e.g., for simulations based on the unrestricted marginal359

spatial model we set Ṽ0 = A
1/2
0 Vsp,0A

1/2
0 , and similarly Ṽ0 = A

1/2
0 Vrsp,0A

1/2
0 for simulations360

using the restricted marginal spatial model.361

Finally, note that in the case where data are generated from an unrestricted marginal362

spatial model, while the true unpartitioned effect β0 is known by design (the value we set363

it to is discussed later on), we do not know the true value of the partitioned effect α0. We364

therefore propose to “estimate” the true α0 as follows: consider the working linear model365

in (1), but evaluated at the true unpartitioned effect. Given E(e) = 0 and Cov(e) = σ2
e,0I,366

then we can rearrange the working linear model to produce a simple estimate of the induced367

spatial effect as ρ̂0 = A
−1/2
0 (y−µ0). An estimate of the true partitioned effect then follows368

as α̂0 = β0 + (D>0D0)
−1D>0 ρ̂. This estimate obviously varies across simulated dataset,369

since the spatial locations and covariates change with each dataset. For the remainder of370

the simulation study, we treat α̂0 as being the actual true partitioned effect and denote it371

as α0 for simplicity.372
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4.1 Count Responses from an Unrestricted Spatial Model373

For generating count responses from an unrestricted marginal spatial model, we set the374

true vector of unpartitioned effects to β0 = (−1, 1)> and g(·) to be the log link function.375

Then we used the algorithm implemented in the R package PoisNor (Amatya et al., 2019)376

to generate count responses from an unrestricted marginal spatial model.377

From the comparative boxplots of the estimate slope, we see that across all four samples378

sizes tests, the three GEEs produced estimates centered around the true unpartitioned slope379

of one. However, GEEsp exhibits much less variability compared to GEEind and GEErsp380

(Figure 1a), while its empirical variance also tended to zero the fastest. This is consistent381

with the idea that using a working covariance matrix which has a similar, or in this case the382

same, structure as the true marginal covariance leads to more efficient estimation. Overall383

then, one may (naively) conclude that changing the working covariance matrix only affects384

the precision of the estimates, not the quantity each GEE is estimating.385

On the other hand, when we examine scatterplots of the estimated slopes versus the386

true partitioned slope, the evidence of spatial confounding start to become clearer (Fig-387

ure 1b). In particular, we observe evidence that the GEErsp is in fact estimating the388

partitioned rather than the unpartitioned slope. This result empirically confirms one of389

the main consequences of spatial confounding in GEEs: for a given datset, changing from390

an unrestricted to a restricted spatial covariance matrix changes the target quantity being391

estimated in the GEE from an unpartitioned to a partitioned effect. As an aside, one could392

ask what quantity GEEind is estimating in this setting; we leave this as an avenue of future393

research (see Gromping, 1996, for related discussion).394

Turning to inference, sandwich-based Wald intervals from all three types of GEEs395

achieved approximately nominal coverage probability for the true unpartitioned slope (Fig-396

ure 1c). However, GEEind and GEErsp produce much wider confidence intervals compared397

to GEEsp (Figure 1d). This is again in line with our discussion in Section 3. That is, if398

the working covariance matrix structure is not aligned with the target of inference, then399

to ensure valid inference we pay the price of lack of statistical efficiency and subsequently400

wider confidence intervals.401
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Figure 1: Results from fitting independent estimating equations (GEEind), unrestricted
spatial GEEs (GEEsp) and restricted spatial GEEs (GEErsp) to count responses simulated
from an unrestricted marginal spatial model. Panel (a) shows boxplots of the estimated
slopes, panel (b) shows scatterplots of the estimated slopes against the true unpartitioned
effects, where the dashed line is the y = x line, and panels (c) and (d) show the empirical
coverage probability and boxplots of interval widths of 95% Wald confidence intervals,
respectively, for the true unpartitioned slope.
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4.2 Count Responses from a Restricted Spatial Model402

For generating count responses from a restricted marginal spatial model, we set the true403

vector of partitioned effects as α0 = (−1, 1)> and g(·) to be the log link function. From404

the comparative boxplots of the estimate slope, we see that across all four samples sizes,405

the three GEEs produced estimates again centered around the true partitioned slope of406

one (Figure 2a). However, this time it was GEErsp which exhibited the least variability,407

followed by compared to GEEind and GEEsp. Regarding inference for the true partitioned408

slope, while sandwich-based Wald intervals from all three types of GEEs had approximately409

nominal coverage probability (Figure 2b), it was GEErsp whivh had consistently the small-410

est interval widths, followed by GEEind and GEEsp (Figure 2c). The intervals from the411

restricted spatial GEE also tended to zero the fastest with increasing sample size. These412

results are again consistent with the notion that if the working covariance matrix structure413

is not aligned with the target of inference, then a trade off in statistical efficiency is made414

in order to ensure valid inference.415

In the Supplementary Material, we present numerical results for the cases of the con-416

tinuous responses and binomial responses, while also presenting further simulations where417

either the unpartitioned slope (in the case of the unrestricted models) or the partitioned418

slope (in the case of the restricted models) was set equal to zero. Results from these were419

very similar to those present above for the case of non-zero effects. We also performed420

further simulation studies (not presented) to examine scenarios where the covariate and/or421

the marginal covariance matrix exhibited little spatial structure. Not surprisingly, in such422

cases the degree of spatial confounding was reduced and so the differences in results between423

all three types of GEEs fitted was less pronounced.424

To summarize, the results from this simulation study demonstrate how spatial con-425

founding can arise in GEEs, and its consequences on estimation and statistical efficiency.426

Naively, one could examine Figures 1 and 2 and conclude that the results are entirely as ex-427

pected: the closer the working covariance matrix structure to the true marginal covariance,428

the more efficient the inference from a GEE is. While this conclusion is correct, it belies429

how spatial confounding is driving these results. That is, the choice of the spatial working430

covariance matrix has an effect on both the target quantity that the GEE is estimating and431

16



Figure 2: Results from fitting independent estimating equations (GEEind), unrestricted
spatial GEEs (GEEsp) and restricted spatial GEEs (GEErsp) to count responses simulated
from a restricted marginal spatial model. Panel (a) shows boxplots of the estimated slopes,
panel (b) shows scatterplots of the estimated slopes against the true unpartitioned effects,
where the dashed line is the y = x line, and panels (c) and (d) show the empirical coverage
probability and boxplots of interval widths of 95% Wald confidence intervals, respectively,
for the true unpartitioned slope.
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the efficiency of the inference, thus reflecting the degree of alignment between this target432

and the true effect in the underlying data generation mechanism.433

5 Application to Pelagic Fish Species Richness Data434

As an example of the effects of spatial confounding in a real application of GEEs, we435

consider data collected as part of the 2016 fall bottom trawl survey by the US Northeast436

Fisheries Science Centre (Northeast Fisheries Science Center, 2021). Data from the sur-437

vey are publicly available, and can be accessed along with more details about the survey438

design at https://www.fisheries.noaa.gov/inport/item/22560. As the response, we439
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considered the recorded species richness of 20 pelagic fish species recorded at n = 605440

spatial locations in the US Northeast Shelf marine ecosystem. That is, each element in the441

response vector y is a non-negative integer representing the number of different pelagic fish442

species recorded at that spatial location. Analysis was done by treating the response as an443

integer-valued count.444

We modeled the distribution of species richness as a function of two covariates known445

to be key environmental drivers of the ecosystem, namely bathymetry (or depth) and sea446

surface temperature. Furthermore, to account for potential non-linearity in the relationship447

between species richness and these two covariates, we included both covariates as linear and448

quadratic terms along with their (linear) interaction. Collectively, all terms were via the449

poly function in R. Along with an intercept, this lead to a model matrix X of dimension450

605× 6. Next, from spatial plots of the species richness along with the two covariates (see451

Supplementary Material), all exhibited noticeable spatial patterns. Also, a histogram of452

the species richness suggested no strong evidence of overdispersion, and so in the GEEs453

below we used a log link function to relate mean species richness to the two covariates, and454

set h(µ) = µ as the marginal mean-variance function.455

We began by fitting an IEE to the data, and applying Moran’s I test (Moran, 1950)456

to the corresponding Pearson residuals. The resulting test showed clear statistical evi-457

dence of residual spatial correlation in the data (p-value < 0.001). Next, we proceeded458

to fit both the unrestricted spatial GEE and restricted spatial GEE, and constructed 95%459

sandwich-based Wald confidence intervals for all three GEEs using the approach discussed460

in Section 3; see the Supplementary Material for details on estimation of the marginal461

covariance matrix Ṽ0. The three GEEs produced varying conclusions in terms of which co-462

efficients were statistically different from zero (Table 1). For example, all three presented463

clear evidence of a strong negative effect for the linear effect of sea surface temperature464

(with similar magnitude of the estimated coefficients), as well as no evidence of a linear465

effect for depth (although the magnitudes and signs of the estimated coefficients differed466

substantially between the three GEEs). On the other hand, only the unrestricted spatial467

GEE exhibited evidence of the quadratic effect for depth being statistically different from468

zero, while the unrestricted and restricted spatial GEEs but not the IEE showed evidence469
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Table 1: Estimated regression coefficients and 95% sandwich-based Wald confidence in-
tervals (in parentheses) for the IEE (GEEind), unrestricted spatial GEE (GEEsp), and
restricted spatial GEE (GEErsp), fitted to pelagic fish species richness data. The two
covariates included in all models were sea surface temperature (Temp) and bathymetry
(Depth). Confidence intervals that do not contain zero are bolded.

Covariate GEEind GEEsp GEErsp

Intercept 1.428 (1.274, 1.581) 1.451 (1.307, 1.594) 1.438 (1.349, 1.528)
Depth -1.773 (-3.907, 0.360) 0.722 (-0.811, 2.254) -0.415 (-1.861, 1.030)
Depth2 -0.091 (-1.657, 1.475) -1.327 (-2.483, -0.171) -0.764 (-1.723, 0.196)
Temp -2.062 (-3.824, -0.300) -1.849 (-2.809, -0.888) -1.980 (-3.093, -0.868)
Temp2 1.032 (-0.453, 2.517) 1.159 (0.263, 2.056) 1.059 (0.159, 1.959)
Depth:Temp -2.155 (-4.067, -0.244) -0.729 (-1.690, 0.232) -1.449 (-2.427, -0.472)

of a strong positive effect of the quadratic effect of temperature. Regarding the interaction470

term between depth and temperature, only the IEE and restricted spatial GEE found clear471

evidence of an effect. Overall, the differing conclusions suggests possible evidence of spatial472

confounding in this data. Indeed, across all the six terms included in the mean model, it473

was interesting to observe that the magnitude of the estimated coefficients from the re-474

stricted spatial GEE was always between that of the IEE and unrestricted spatial GEE.475

This was generally consistent with our simulation results for Poisson responses when the476

data were generated from an unrestricted spatial model (see Section 4 above), and with477

the impact of spatial confounding on GEEs.478

6 Discussion479

The findings of this article have important implications for the use of GEEs in spatial480

analysis. To quote the recent work of Bible et al. (2019) who examined confounding for481

GEEs in a different context: “In practice, analysts rarely check for the misspecification482

of the working correlation but directly apply GEEs . . . , falsely hoping that the sandwich483

variance estimator corrects for the correlation.” In the presence of spatial confounding, we484

have demonstrated that GEEs can estimate different quantities depending on the choice of485

the working correlation matrix, and how spatial confounding affects efficiency of inference486

in a GEE based on the extent to which the choice of the working correlation is aligned with487

the inferential target. While the proposed restricted spatial GEE is an attempt to alleviate488
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spatial confounding in this context, this does not necessarily translate to better performance489

all the time. Rather, we hope that this article will bring about a more cautious approach490

in the way GEEs are applied to spatial data: instead of “falling back” on its robustness491

to misspecification, in the presence of spatial confounding practitioners need to be more492

circumspect, using a-priori background knowledge along with careful consideration of the493

research questions and data generation process to determine the target quantity they are494

interested in, and from this decide on the form of the working covariance matrix to use.495

Moreover, we concur with Khan and Calder (2020) among others that more theoretical496

and empirical research needs to be done to better understand when it is appropriate to use497

methods that adjust versus do not adjust for spatial confounding.498

It is interesting to compare our work with that of Hanks et al. (2015) and Khan and499

Calder (2020), who showed in the context of Bayesian spatial mixed models that one is500

almost always better off fitting a non-spatial model rather than a restricted spatial model,501

because the latter tends to suffer from severe undercoverage and inflated Type-S errors (the502

Bayesian equivalent of Type I errors). Khan and Calder (2020) showed this occurs because503

restricted spatial regression effectively amounts to using an overfitted fixed effects model,504

which reduces the posterior variance inappropriately such that covariates are deemed to be505

statistically significant even if they are truly unimportant. By contrast, we did not observe506

evidence in our simulations of such undercoverage for restricted spatial GEEs e.g., our507

confidence intervals were relatively well-calibrated irrespective of the working covariance508

matrix used. While a direct comparison between spatial mixed models and GEEs is not509

straightforward, we believe a large part of why such undercoverage did not occur is due to510

the use of the sandwich-based standard errors. That is, because GEEs are built on the idea511

that the working correlation may not be equal to the true marginal spatial correlation, then512

a necessary correction of the standard errors is made to ensure undercoverage will not occur,513

at least asymptotically. As explained in Section 3, the sandwich standard error adjusts for514

the misalignment between the type of GEE being used and the target quantity of inference.515

Such an adjustment does not occur in the Bayesian spatial mixed models explored by Khan516

and Calder (2020), although interestingly Hanks et al. (2015) had in fact earlier proposed517

sandwich-based standard errors for such mixed models, and empirically showed that it518
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resolves the problem of undercoverage and Type-S error inflation, albeit it may end up519

being too conservative. A further avenue of research is to compare our developments with520

those for autologistc models for spatial data, where marginal intepretations of covariate521

effects are also commonly of interest and for which some research on spatial confounding522

has been done (e.g., Caragea and Kaiser, 2009; Hughes, 2014).523

As a concluding point, in the Supplementary Material we provide an extensive discussion524

on the large sample properties of unrestricted and restricted spatial GEEs in the presence525

of spatial confounding (see also Zimmerman and Ver Hoef, 2021, for related research). In526

brief, the form of spatial confounding we have studied in this article arises due to a finite527

sample correlation between spatially structured covariates X and the induced spatial effect528

ρ (similar to that of Hanks et al., 2015). It is also possible for spatial confounding in GEEs529

to occur in a way that persists with increasing sample size, and we leave investigation of530

this as an avenue of future research (see also Paciorek, 2010; Dupont et al., 2021, in the531

context of spatial mixed models).532

SUPPLEMENTARY MATERIAL533

Additional discussion: Appendix A presents details for estimating the unrestricted and534

restricted spatial GEEs, Appendix B discusses the constant mean-variance function535

case in more detail, and Appendix F discusses large sample behaviour.536

Additional Simulation and Application Results: Appendices C and D presents fur-537

ther numerical results for the simulation study in Section 4, and Appendix E presents538

further exploratory plots for the application to the pelagics species richness data.539
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